
Dataflow Analysis

Dataflow analysis is a collection of techniques for
analyzing the runtime behavior of a program.
Many optimization techniques are based on
dataflow analysis. For example, one kind of
dataflow analysis called live variable analysis
determines which variables at a given point have
data in them that will be used again. We can use
this to determine which variables should be saved
in registers, and we can also use it to find un-
initialized variables. Most compilers do some sort
of dataflow analysis before generating code.

For example, consider the
following block of code:

 if (x > 0)
 a = 5
 else
 a = y+z
 x = (a+z)+1

The flowgraph for this block
is shown at the right:

x > 0

a = 5 a = y+z

x = a+z+1

x > 0

a = 5 a = y+z

x = a+z+1

Dataflow analysis constructs the flow graph for
selected portions of a program and then tries to
draw conclusions about runtime behavior from the
flow graph.

As an illustration of the dataflow techniques we
will do some live variable analysis.
Terminology:

• The statement x=y+z is said to define x and
to use y and z.

• The variable x is live at point p in the
program if:
A. There is a backwards path starting at p

that goes to a definition of x
B. There is a forward path starting at p that

reaches a use of x without passing
through another definition of x.

For the example assume that {x,y,z} are all live
coming into the block. Here are the live variables
at every point:

x > 0

a = 5 a = y+z

x = a+z+1

{z}

{x,y,z}

{y,z}

{a,z} {a,z}

To compute live variables we will use the following
sets:

In(s)={ live variables before statement s is executed}
Out(s) = {live variables after statement s is executed}
Use(s)={variables used in statement s}
Def(s)={variables defined in statement s}

In the following equations + represents set union and
- represents set difference.

Here are equations relating these sets:

A. In(s)=Use(s) + {Out(s) - Def(s)}
B. If s2 immediately follows s1:

s1

s2

then In(s2) = Out(s1)

C. The Fan-out rule:

s0

s1 s2 s3

 Out(s0) = In(s1)+In(s2)+In(s3)

D. The Fan-in rule:

s1 s2

s3

Out(s1) = In(s3)
Out(s2) = In(s3)

E. Nothing is live after the final statement

